A Linear Functional Equation of Third Order associated to the Fibonacci Numbers

Soon-Mo Jung and Michael Th. Rassias

Mathematics Section, College of Science and Technology, Hongik University, 339-701 Sejong, Republic of Korea
E-mail: smjung@hongik.ac.kr

Department of Mathematics, ETH–Zürich, Ramistrasse 101, 8092 Zürich, Switzerland
E-mail: michail.rassias@math.ethz.ch

Abstract

Given a vector space \(X \), we investigate the solutions \(f: \mathbb{R} \to X \) of the linear functional equation of third order

\[
f(x) = pf(x - 1) + qf(x - 2) + rf(x - 3),
\]

which is strongly associated to a well known identity for the Fibonacci numbers. Moreover, we prove the Hyers-Ulam stability of that equation.

1 Introduction

In 1940, S.M. Ulam [33] gave a wide ranging talk before the mathematics club of the University of Wisconsin in which he discussed a number of important unsolved problems. Among those was the question concerning the stability of group homomorphisms:

Let \(G_1 \) be a group and let \(G_2 \) be a metric group with the metric \(d(\cdot, \cdot) \). Given \(\varepsilon > 0 \), does there exist a \(\delta > 0 \) such that if a function \(h: G_1 \to G_2 \) satisfies the inequality \(d(h(xy), h(x)h(y)) < \delta \) for all \(x, y \in G_1 \), then there exists a homomorphism \(H: G_1 \to G_2 \) with \(d(h(x), H(x)) < \varepsilon \) for all \(x \in G_1 \) ?

The case of approximately additive functions was solved by D.H. Hyers [12] under the assumption that \(G_1 \) and \(G_2 \) are Banach spaces. Indeed, he proved the following theorem

Theorem 1.1 Let \(f: G_1 \to G_2 \) be a function between Banach spaces such that

\[
\|f(x + y) - f(x) - f(y)\| \leq \varepsilon
\]

for some \(\varepsilon > 0 \) and for all \(x, y \in G_1 \). Then the limit

\[
A(x) := \lim_{n \to \infty} 2^{-n} f(2^n x)
\]

Mathematics Subject Classification (2010): 39B52, 39B82.

Key words and phrases: linear functional equation of third order, Hyers-Ulam stability, Fibonacci numbers.
exists for each \(x \in G_1 \), and \(A : G_1 \to G_2 \) is the unique additive function such that
\[
\| f(x) - A(x) \| \leq \varepsilon
\]
for any \(x \in G_1 \). Moreover, if \(f(tx) \) is continuous in \(t \) for each fixed \(x \in G_1 \), then the function \(A \) is linear.

Hyers proved that each solution of the inequality \(\| f(x+y) - f(x) - f(y) \| \leq \varepsilon \) can be approximated by an exact solution, say an additive function. In this case, the Cauchy additive functional equation, \(f(x+y) = f(x) + f(y) \), is said to have the Hyers-Ulam stability.

Since then, the stability problems of a large variety of functional equations have been extensively investigated by several mathematicians (cf. [8, 13, 14, 16, 17, 22, 24, 26]). For further discussion and references one is referred to [5, 6, 7, 23, 30].

In this paper, as usual, \(\mathbb{C}, \mathbb{R}, \mathbb{Z} \) and \(\mathbb{N} \) stand for the sets of complex numbers, real numbers, integers, and positive integers, respectively. For a nonempty subset \(S \) of a vector space, let \(\xi : S \to S \) be a function. Moreover, \(\xi^0(x) = x, \xi^{n+1}(x) = \xi(\xi^n(x)) \) and (only for bijective \(\xi \)) \(\xi^{-n-1}(x) = \xi^{-1}(\xi^{-n}(x)) \) for \(x \in S \) and \(n \in \mathbb{N}_0 := \mathbb{N} \cup \{0\} \).

S.-M. Jung has proved in [14] (see also [15]) some results on solutions and Hyers-Ulam stability of the functional equation
\[
f(x) = pf(\xi(x)) - qf(\xi^2(x)),
\]
in the case where \(S = \mathbb{R} \) and \(\xi(x) = x - 1 \) for \(x \in \mathbb{R} \).

If \(S := \mathbb{N}_0 \) and \(p, q \in \mathbb{Z} \), then solutions \(x : \mathbb{N}_0 \to \mathbb{Z} \) of the difference equation \(f(x) = pf(x-1) - qf(x-2) \) are called the Lucas sequences (see, e.g., [29]). In some special cases they are called with specific names, for example, the Fibonacci numbers \((p = 1, q = -1), x(0) = 0, x(1) = 1\), the Lucas numbers \((p = 1, q = -1), x(0) = 2, x(1) = 1\), the Pell numbers \((p = 2, q = -1), x(0) = 0, x(1) = 1\), the Pell-Lucas (or companion Lucas) numbers \((p = 2, q = -1), x(0) = 2, x(1) = 2\), and the Jacobsthal numbers \((p = 1, q = -2), x(0) = 0, x(1) = 1\).

For some information and further references concerning the functional equations in a single variable, we refer to [1, 20, 21]. Let us mention yet that the problem of Hyers-Ulam stability of functional equations is connected to the notions of controlled chaos (see [31]) and shadowing (see [11, 25, 27]).

We remark that if \(\xi : S \to S \) is bijective, then Eq. (1.1) can be written in the following equivalent form
\[
f(\eta^2(x)) = pf(\eta(x)) - qf(x),
\]
where \(\eta := \xi^{-1} \).

In view of the last remark, the following Hyers-Ulam stability result concerning equation (1.1) can be derived from [4, Theorem 2] (see also [32]).

Theorem 1.2 Let \(p, q \in \mathbb{R} \) be given with \(q \neq 0 \) and let \(S \) be a nonempty subset of a vector space. Assume that \(a_1, a_2 \) are the complex roots of the quadratic equation \(x^2 - px + q = 0 \) with \(|a_i| \neq 1 \) for \(i \in \{1, 2\} \). Moreover, assume that \(X \) is either a real vector space if \(p^2 - 4q > 0 \) or a complex vector space if \(p^2 - 4q < 0 \). Let \(\xi : S \to S \) be bijective. If a function \(f : S \to X \) satisfies the inequality
\[
\| f(x) - pf(\xi(x)) + qf(\xi^2(x)) \| \leq \varepsilon
\]
(1.2)
for all \(x \in S \) and for some \(\varepsilon \geq 0 \), then there exists a unique solution \(F : S \rightarrow X \) of (1.1) with
\[
\| f(x) - F(x) \| \leq \frac{\varepsilon}{(|a_1| - 1)(|a_2| - 1)}
\]
for all \(x \in S \).

In [2, Theorem 1.4], the method presented in [14] was modified so as to prove a theorem which is a complement of Theorem 1.2. Note that, for bijective \(\xi \), the following theorem improves the estimation (1.3) in some cases (e.g., \(a_1 = 3/2, a_2 = -3/2 \), or \(a_1 = 1/2, a_2 = -1/2 \)). However, in some other situations (e.g., \(a_1 = 3, a_2 = -3 \)), the estimation (1.3) is better than (1.4). The following theorem also complements Theorem 1.2, because \(\xi \) can be quite arbitrary in the case of (a).

Theorem 1.3 Given \(p, q \in \mathbb{R} \) with \(q \neq 0 \), assume that the distinct complex roots \(a_1, a_2 \) of the quadratic equation \(x^2 - px + q = 0 \) satisfy one of the following two conditions:

(a) \(|a_i| < 1 \) for \(i \in \{1, 2\} \);

(b) \(|a_i| \neq 1 \) for \(i \in \{1, 2\} \) and \(\xi : S \rightarrow S \) is bijective.

Moreover, assume that \(X \) is either a real vector space if \(p^2 - 4q > 0 \) or a complex vector space if \(p^2 - 4q < 0 \). If a function \(f : S \rightarrow X \) satisfies the inequality (1.2), then there exists a solution \(F : S \rightarrow X \) of Eq. (1.1) such that
\[
\| f(x) - F(x) \| \leq \frac{\varepsilon}{|a_1 - a_2|} \left(\frac{|a_1|}{|a_1| - 1} + \frac{|a_2|}{|a_2| - 1} \right)
\]
for all \(x \in S \). Moreover, if the condition (b) is true, then the \(F \) is the unique solution of Eq. (1.1) satisfying (1.4).

In this paper, we investigate the solutions of the functional equation
\[
f(x) = pf(x-1) + qf(x-2) + rf(x-3),
\]
where \(p, q, r \) are real constants. Moreover, we also prove the Hyers-Ulam stability of that equation. The equation (1.5) is a kind of linear functional equations of third order because it is of the form
\[
f(x) = a_1(x)f(\xi(x)) + a_2(x)f(\xi^2(x)) + a_3(x)f(\xi^3(x))
\]
for the case of \(a_1(x) = p, a_2(x) = q, a_3(x) = r, \) and \(\xi(x) = x - 1 \).

2 General solution

In the following theorem, we apply [2, Theorem 1.1] for the investigation of general solutions of the functional equation (1.5).

Theorem 2.1 Let \(p, q, r \) be real constants such that the cubic equation
\[
x^3 + px^2 - qx + r = 0
\]
has the following properties:
(i) \(\alpha_1 \) and \(\alpha_2 \) are two distinct nonzero roots of the cubic equation (2.1);

(ii) it holds true that either \((\alpha_i + p)^2 + 4r/\alpha_i > 0\) for \(i \in \{1, 2\}\) or \((\alpha_i + p)^2 + 4r/\alpha_i < 0\) for \(i \in \{1, 2\}\).

Let \(X \) be either a real vector space if \((\alpha_i + p)^2 + 4r/\alpha_i > 0\) for \(i \in \{1, 2\}\) or a complex vector space if \((\alpha_i + p)^2 + 4r/\alpha_i < 0\) for \(i \in \{1, 2\}\). Then, a function \(f : \mathbb{R} \to X \) is a solution of the functional equation (1.5) if and only if there exist functions \(h_1, h_2 : [-1, 1) \to X \) such that

\[
 f(x) = \frac{\alpha_1}{\alpha_1 - \alpha_2} V_{[x]+1} h_2(x - [x]) + \frac{\alpha_1 r}{\alpha_2 (\alpha_1 - \alpha_2)} V_{[x]} h_2(x - [x] - 1) \\
- \frac{\alpha_2}{\alpha_1 - \alpha_2} U_{[x]+1} h_1(x - [x]) - \frac{\alpha_2 r}{\alpha_1 (\alpha_1 - \alpha_2)} U_{[x]} h_1(x - [x] - 1),
\]

where \([x]\) denotes the largest integer not exceeding \(x\), and \(U_n, V_n \) are defined in (2.5) and (2.13).

Proof. Assume that \(f : \mathbb{R} \to X \) is a solution of Eq. (1.5). If we define an auxiliary function \(g_1 : \mathbb{R} \to X \) by

\[
 g_1(x) := f(x) + \alpha_1 f(x - 1),
\]

then it follows from (1.5) that \(g_1 \) satisfies

\[
 g_1(x) = (\alpha_1 + p) g_1(x - 1) + \frac{r}{\alpha_1} g_1(x - 2)
\]

for any \(x \in \mathbb{R}\). According to [2, Theorem 1.1], there exists a function \(h_1 : [-1, 1) \to X \) such that

\[
 g_1(x) = f(x) + \alpha_1 f(x - 1) = U_{[x]+1} h_1(x - [x]) + \frac{r}{\alpha_1} U_{[x]} h_1(x - [x] - 1)
\]

for all \(x \in \mathbb{R}\), where

\[
 U_n = \frac{a^n - b^n}{a - b} \quad (n \in \mathbb{Z})
\]

and \(a, b\) are the distinct roots of the quadratic equation

\[
 x^2 - (\alpha_1 + p)x - r/\alpha_1 = 0,
\]

i.e.,

\[
 a = \frac{\alpha_1 + p}{2} + \sqrt{\left(\frac{\alpha_1 + p}{2}\right)^2 + \frac{r}{\alpha_1}}, \quad b = \frac{\alpha_1 + p}{2} - \sqrt{\left(\frac{\alpha_1 + p}{2}\right)^2 + \frac{r}{\alpha_1}}.
\]

Since \(a\) is a root of the quadratic equation (2.6), we have

\[
 a^2 = (\alpha_1 + p)a + \frac{r}{\alpha_1}.
\]
We multiply both sides of (2.8) with \(a\) and make use of (2.8) and (i) to get
\[
a^3 = pa^2 + \alpha_a + \frac{r}{\alpha_1}a
\]
\[
= pa^2 + \alpha_a \left((\alpha_1 + p)a + \frac{r}{\alpha_1} \right) + \frac{r}{\alpha_1}a
\]
\[
= pa^2 + \frac{\alpha}{\alpha_1} (\alpha_1^2 + p\alpha_1 + r) + r
\]
\[
= pa^2 + qa + r.
\] (2.9)

Similarly, we also obtain
\[
b^3 = pb^2 + qb + r.
\] (2.10)

Using (2.5), (2.9), and (2.10), we have
\[
pU_{n-1} + qU_{n-2} + rU_{n-3} = \frac{(pa^2 + qa + r)a^{n-3} - (pb^2 + qb + r)b^{n-3}}{a - b} = \frac{a^n - b^n}{a - b} = U_n
\] (2.11)

for all \(n \in \mathbb{Z}\).

If we define an auxiliary function \(g_2 : \mathbb{R} \to X\) by
\[
g_2(x) := f(x) + \alpha_2 f(x - 1),
\]
then it follows from (1.5) that \(g_2\) satisfies
\[
g_2(x) = (\alpha_2 + p)g_2(x - 1) + \frac{r}{\alpha_2}g_2(x - 2)
\]
for any \(x \in \mathbb{R}\). According to [2, Theorem 1.1], there exists a function \(h_2 : [-1, 1) \to X\) such that
\[
g_2(x) = f(x) + \alpha_2 f(x - 1) = V_{[x]+1}h_2(x - [x]) + \frac{r}{\alpha_2}V_{[x]}h_2(x - [x] - 1)
\] (2.12)
for all \(x \in \mathbb{R}\), where
\[
V_n = \frac{c^n - d^n}{c - d} \quad (n \in \mathbb{Z})
\] (2.13)
and \(c, d\) are the distinct roots of the quadratic equation
\[
x^2 - (\alpha_2 + p)x - r/\alpha_2 = 0,
\]
i.e.,
\[
c = \frac{\alpha_2 + p}{2} + \sqrt{\left(\frac{\alpha_2 + p}{2} \right)^2 + \frac{r}{\alpha_2}}, \quad d = \frac{\alpha_2 + p}{2} - \sqrt{\left(\frac{\alpha_2 + p}{2} \right)^2 + \frac{r}{\alpha_2}}.
\] (2.14)

As in the first part, we verify that
\[
V_n = pV_{n-1} + qV_{n-2} + rV_{n-3}
\] (2.15)
for all $n \in \mathbb{Z}$.

We now multiply (2.4) with α_2 and (2.12) with α_1, we subtract the former from the latter, and we then divide the resulting equation by $(\alpha_1 - \alpha_2)$ to get (2.2).

We assume that a function $f : \mathbb{R} \to X$ is given by (2.2), where $h_1, h_2 : [-1, 1) \to X$ are arbitrarily given functions, and U_n, V_n are given by (2.5) and (2.13), respectively. Then, by (2.2), (2.11), and (2.15), we have

$$p f(x - 1) + q f(x - 2) + r f(x - 3)$$

$$= \frac{\alpha_1}{\alpha_1 - \alpha_2} (p V[x] + q V[x] - 1 + r V[x] - 2) h_2(x - [x])$$
$$+ \frac{\alpha_1 r}{\alpha_2} (p V[x] - 1 + q V[x] - 2 + r V[x] - 3) h_2(x - [x] - 1)$$
$$- \frac{\alpha_2}{\alpha_1 - \alpha_2} \left(p U[x] + q U[x] - 1 + r U'[x] - 2 \right) h_1(x - [x])$$
$$- \frac{\alpha_2}{\alpha_1 - \alpha_2} \left(p U'[x] + q U'[x] - 1 + r U''[x] - 2 \right) h_1(x - [x] - 1)$$
$$+ \frac{\alpha_1}{\alpha_1 - \alpha_2} V'[x] + 1 h_2(x - [x])$$
$$+ \frac{\alpha_1}{\alpha_1 - \alpha_2} V'[x] + 1 h_2(x - [x] - 1)$$
$$= f(x)$$

for all $x \in \mathbb{R}$, which implies that $f(x)$ is a solution of (1.5).

According to [19, p. 92], the Fibonacci numbers F_n satisfy the identity

$$F_n^2 = 2F_{n-1}^2 + 2F_{n-2}^2 - F_{n-3}^2$$

(2.16)

for all integers $n > 3$. We can easily notice that the linear equation of third order

$$f(x) = 2 f(x - 1) + 2 f(x - 2) - f(x - 3)$$

(2.17)

is strongly related to the identity (2.16).

Corollary 2.2 Let X be a real vector space. A function $f : \mathbb{R} \to X$ is a solution of the functional equation (2.17) if and only if there exist functions $h_1, h_2 : [-1, 1) \to X$ such that

$$f(x) = \frac{5 + 3 \sqrt{5}}{10} U'[x] + 1 h_1(x - [x]) + \frac{15 + 7 \sqrt{5}}{10} U'[x] h_1(x - [x] - 1)$$
$$+ \frac{5 - 3 \sqrt{5}}{10} V'[x] + 1 h_2(x - [x]) + \frac{15 - 7 \sqrt{5}}{10} V'[x] h_2(x - [x] - 1),$$

where U'_n and V'_n are defined in (2.18).

Proof. If we set $p = 2$, $q = 2$, and $r = -1$ in (2.1), then the cubic equation

$$x^3 + 2x^2 - 2x - 1 = 0$$

has three distinct nonzero roots including

$$\alpha_1 = \frac{-3 + \sqrt{5}}{2} \text{ and } \alpha_2 = \frac{-3 - \sqrt{5}}{2}.$$
Moreover, it holds that \((\alpha_1 + p)^2 + 4r/\alpha_1 > 0\) and \((\alpha_2 + p)^2 + 4r/\alpha_2 > 0\). By (2.5), (2.7), (2.13), and (2.14), we have

\[U_n' = \frac{a^n - b^n}{a - b} \quad \text{and} \quad V_n' = \frac{c^n - d^n}{c - d}, \tag{2.18} \]

where we make use of (2.7) and (2.14) to calculate

\[a = \frac{3 + \sqrt{5}}{2}, \quad b = -1, \quad c = \frac{3 - \sqrt{5}}{2}, \quad d = -1. \]

Finally, in view of Theorem 2.1, we conclude that the assertion of our corollary is true. \(\square\)

Corollary 2.3 If a function \(f : \mathbb{R} \to \mathbb{R}\) is a solution of the functional equation (2.17), then there exist real constants \(\mu_1, \mu_2, \nu_1, \text{ and } \nu_2\) such that

\[f(n) = \frac{5 + 3\sqrt{5}}{10} \mu_1 U_{n+1}' + \frac{15 + 7\sqrt{5}}{10} \mu_2 U_n' + \frac{5 - 3\sqrt{5}}{10} \nu_1 V_{n+1}' + \frac{15 - 7\sqrt{5}}{10} \nu_2 V_n' \]

for all \(n \in \mathbb{Z}\), where \(U_n'\) and \(V_n'\) are defined in (2.18).

3 Hyers-Ulam stability

Theorem 3.1 Let \(p, q, r\) be real constants with \(r \neq 0\), \(\alpha\) be a nonzero root of the cubic equation (2.1), and let \(a, b\) be the roots of the quadratic equation \(x^2 - (\alpha + p)x - r/\alpha = 0\) with \(|a| > 1\) and \(0 < |b| < 1\). Assume that \((\alpha + p)^2 + 4r/\alpha \neq 0\). Let \(X\) be either a real Banach space if \((\alpha + p)^2 + 4r/\alpha > 0\) or a complex Banach space if \((\alpha + p)^2 + 4r/\alpha < 0\). If a function \(f : \mathbb{R} \to X\) satisfies the inequality

\[\|f(x) - pf(x - 1) - qf(x - 2) - rf(x - 3)\| \leq \varepsilon \] \(\text{for all } x \in \mathbb{R} \text{ and for some } \varepsilon \geq 0,\) then there exists a solution \(G : \mathbb{R} \to X\) of Eq. (1.5) such that

\[\|f(x) + \alpha f(x - 1) - G(x)\| \leq \frac{|a| - |b|}{|a - b| (|a| - 1)(1 - |b|)} \varepsilon \] \(\text{for all } x \in \mathbb{R}.\)

Proof. If we define an auxiliary function \(g : \mathbb{R} \to X\) by

\[g(x) := f(x) + \alpha f(x - 1), \]

then, as we did in (2.3), it follows from (3.1) that \(g\) satisfies the inequality

\[\left\| g(x) - (\alpha + p)g(x - 1) - \frac{r}{\alpha} g(x - 2) \right\| \leq \varepsilon \]

or

\[\left\| g(x) - ag(x - 1) - b[g(x - 1) - ag(x - 2)] \right\| \leq \varepsilon \]
for any \(x \in \mathbb{R} \).

If we replace \(x \) with \(x - k \) in the last inequality, then we have
\[
\| g(x - k) - ag(x - k - 1) - b[g(x - k - 1) - ag(x - k - 2)] \| \leq \varepsilon
\]
for all \(x \in \mathbb{R} \). Furthermore, we get
\[
\| b^k [g(x - k) - ag(x - k - 1)] - b^{k+1}[g(x - k - 1) - ag(x - k - 2)] \| \leq |b|^k \varepsilon
\] (3.3)
for all \(x \in \mathbb{R} \) and \(k \in \mathbb{Z} \). By (3.3), we obviously have
\[
\| g(x) - ag(x - 1) - b^n [g(x - n) - ag(x - n - 1)] \|
\leq \sum_{k=0}^{n-1} \| b^k [g(x - k) - ag(x - k - 1)]
\]
\[
- b^{k+1}[g(x - k - 1) - ag(x - k - 2)] \| \leq \sum_{k=0}^{n-1} |b|^k \varepsilon
\] (3.4)
for \(x \in \mathbb{R} \) and \(n \in \mathbb{N} \).

For any \(x \in \mathbb{R} \), (3.3) implies that the sequence \(\{b^n [g(x - n) - ag(x - n - 1)]\} \) is a Cauchy sequence. (Note that \(0 < |b| < 1 \). Therefore, we can define a function \(G_1 : \mathbb{R} \to X \) by
\[
G_1(x) := \lim_{n \to \infty} b^n [g(x - n) - ag(x - n - 1)],
\]
since \(X \) is complete. In view of the definition of \(G_1 \) and using the relations, \(a + b = \alpha + p \) and \(ab = -r/\alpha \), we obtain
\[
(\alpha + p)G_1(x - 1) + \frac{r}{\alpha}G_1(x - 2) = (a + b)G_1(x - 1) - abG_1(x - 2)
\]
\[
= \underbrace{\frac{a + b}{b}} \lim_{n \to \infty} b^{n+1}[g(x - (n + 1)) - ag(x - (n + 1) - 1)]
\]
\[
- \frac{ab}{b^n} \lim_{n \to \infty} b^{n+2}[g(x - (n + 2)) - ag(x - (n + 2) - 1)]
\] (3.5)
\[
= \frac{a + b}{b} G_1(x) - \frac{a}{b} G_1(x)
\]
\[
= G_1(x)
\]
for all \(x \in \mathbb{R} \). Since \(\alpha \) is a nonzero root of the cubic equation (2.1), it follows from (3.5) that
\[
G_1(x) - pG_1(x - 1) - qG_1(x - 2) - rG_1(x - 3)
\]
\[
= (\alpha + p)G_1(x - 1) + \frac{r}{\alpha}G_1(x - 2) - pG_1(x - 1) - qG_1(x - 2) - rG_1(x - 3)
\]
\[
= \alpha G_1(x - 1) + \left(-q + \frac{r}{\alpha} \right)G_1(x - 2) - rG_1(x - 3)
\]
\[
= \alpha G_1(x - 1) + (-\alpha^2 - p\alpha)G_1(x - 2) - rG_1(x - 3)
\]
\[
= \alpha \left((\alpha + p)G_1(x - 2) + \frac{r}{\alpha}G_1(x - 3) \right) - \alpha (\alpha + p)G_1(x - 2) - rG_1(x - 3)
\]
\[
= 0
\]
for all $x \in \mathbb{R}$. Hence, we conclude that G_1 is a solution of (1.5).

If n tends to infinity, then (3.4) yields that

$$\|g(x) - ag(x - 1) - G_1(x)\| \leq \frac{\varepsilon}{1 - |b|} \quad (3.6)$$

for every $x \in \mathbb{R}$.

On the other hand, it also follows from (3.1) that

$$\|g(x) - bg(x - 1) - a[g(x - 1) - bg(x - 2)]\| \leq \varepsilon$$

for all $x \in \mathbb{R}$. Analogously to (3.7), replacing x by $x + k$ in the last inequality and then dividing by $|a|^k$ both sides of the resulting inequality, then we have

$$\|a^{-k}[g(x + k) - bg(x + k - 1)] - a^{-k+1}[g(x + k - 1) - bg(x + k - 2)]\| \leq |a|^{-k} \varepsilon \quad (3.7)$$

for all $x \in \mathbb{R}$ and $k \in \mathbb{Z}$. By using (3.7), we further obtain

$$\|a^{-n}[g(x + n) - bg(x + n - 1)] - [g(x) - bg(x - 1)]\| \leq \sum_{k=1}^{n} \|a^{-k}[g(x + k) - bg(x + k - 1)] - a^{-k+1}[g(x + k - 1) - bg(x + k - 2)]\| \leq \sum_{k=1}^{n} |a|^{-k} \varepsilon \quad (3.8)$$

for $x \in \mathbb{R}$ and $n \in \mathbb{N}$.

On account of (3.7), we see that the sequence $\{a^{-n}[g(x + n) - bg(x + n - 1)]\}$ is a Cauchy sequence for any fixed $x \in \mathbb{R}$. (Note that $|a| > 1$). Hence, we can define a function $G_2 : \mathbb{R} \rightarrow X$ by

$$G_2(x) := \lim_{n \rightarrow \infty} a^{-n}[g(x + n) - bg(x + n - 1)].$$

Due to the definition of G_2 and the relations, $a + b = \alpha + p$ and $ab = -r/\alpha$, we get

$$(\alpha + p)G_2(x - 1) + \frac{r}{\alpha}G_2(x - 2) = (a + b)G_2(x - 1) - abG_2(x - 2)$$

$$= \frac{a + b}{a} \lim_{n \rightarrow \infty} a^{-(n-1)}[g(x + n - 1) - bg(x + n - 2)] - \frac{ab}{a} \lim_{n \rightarrow \infty} a^{-(n-2)}[g(x + n - 2) - bg(x + n - 3)]$$

$$= \frac{a + b}{a} G_2(x) - \frac{b}{a} G_2(x)$$

$$= G_2(x)$$

for any $x \in \mathbb{R}$. Similarly as in the first part, we can show that G_2 is a solution of Eq. (1.5).

If we let n tend to infinity, then it follows from (3.8) that

$$\|G_2(x) - g(x) + bg(x - 1)\| \leq \frac{\varepsilon}{|a| - 1} \quad (3.9)$$

for $x \in \mathbb{R}$.

It follows from (3.6) and (3.9) that
\[
\left\| g(x - 1) - \frac{1}{a - b} G_2(x) + \frac{1}{a - b} G_1(x) \right\|
\leq \left\| \frac{1}{a - b} G_1(x) - \frac{1}{a - b} g(x) + \frac{a}{a - b} g(x - 1) \right\|
+ \left\| \frac{1}{a - b} g(x) - \frac{b}{a - b} g(x - 1) - \frac{1}{a - b} G_2(x) \right\|
\leq \frac{|a| - |b|}{|a - b| (|a| - 1)(1 - |b|)} \varepsilon
\]
for any \(x \in \mathbb{R} \).

Finally, if we define a function \(G : \mathbb{R} \to X \) by
\[
G(x) := \frac{1}{a - b} G_2(x + 1) - \frac{1}{a - b} G_1(x + 1)
\]
for all \(x \in \mathbb{R} \), then \(G \) is also a solution of Eq. (1.5). Moreover, the validity of (3.2) follows from the last inequality. \(\square \)

The following theorem is the main theorem of this paper.

Theorem 3.2 Given real constants \(p, q, r \) with \(r \neq 0 \), let \(\alpha_1 \) and \(\alpha_2 \) be distinct nonzero roots of the cubic equation (2.1) and let \(a_i, b_i \) be the roots of the quadratic equation \(x^2 - (\alpha_i + p)x - r/\alpha_i = 0 \) with \(|a_i| > 1 \) and \(0 < |b_i| < 1 \) for \(i \in \{1, 2\} \). Assume that either \((\alpha_i + p)^2 + 4r/\alpha_i > 0 \) for all \(i \in \{1, 2\} \) or \((\alpha_i + p)^2 + 4r/\alpha_i < 0 \) for all \(i \in \{1, 2\} \). Let \(X \) be either a real Banach space if \((\alpha_i + p)^2 + 4r/\alpha_i > 0 \) or a complex Banach space if \((\alpha_i + p)^2 + 4r/\alpha_i < 0 \). If a function \(f : \mathbb{R} \to X \) satisfies the inequality (3.1) for all \(x \in \mathbb{R} \) and for some \(\varepsilon \geq 0 \), then there exists a solution \(F : \mathbb{R} \to X \) of Eq. (1.5) such that
\[
\| f(x) - F(x) \| \leq \frac{|a_1| - |b_1|}{|a_1 - b_1|} \frac{|a_2|}{|a_1 - a_2| (|a_1| - 1)(1 - |b_1|)} \varepsilon
+ \frac{|a_2| - |b_2|}{|a_2 - b_2|} \frac{|a_1|}{|a_1 - a_2| (|a_2| - 1)(1 - |b_2|)} \varepsilon
\]
(3.10)
for all \(x \in \mathbb{R} \).

Proof. According to Theorem 3.1, there exists a solution \(F_i : \mathbb{R} \to X \) of Eq. (1.5) such that
\[
\| f(x) + \alpha_i f(x - 1) - F_i(x) \| \leq \frac{|a_1| - |b_i|}{|a_i - b_i| (|a_i| - 1)(1 - |b_i|)} \varepsilon
\]

for any \(x \in \mathbb{R} \) and \(i \in \{1, 2\} \). In view of the last inequalities, we have

\[
\left\| f(x) - \frac{\alpha_1}{\alpha_1 - \alpha_2} F_2(x) + \frac{\alpha_2}{\alpha_1 - \alpha_2} F_1(x) \right\| \\
\leq \left\| \frac{\alpha_2}{\alpha_1 - \alpha_2} F_1(x) - \frac{\alpha_2}{\alpha_1 - \alpha_2} f(x) - \frac{\alpha_1 \alpha_2}{\alpha_1 - \alpha_2} f(x - 1) \right\| \\
+ \left\| \frac{\alpha_1}{\alpha_1 - \alpha_2} f(x) + \frac{\alpha_1 \alpha_2}{\alpha_1 - \alpha_2} f(x - 1) - \frac{\alpha_1}{\alpha_1 - \alpha_2} F_2(x) \right\| \\
\leq \frac{|a_1| - |b_1|}{|a_1 - b_1|} \frac{|\alpha_1| - |\alpha_2|}{|\alpha_1 - \alpha_2|} (|a_1| - 1)(1 - |b_1|) \\
+ \frac{|a_2| - |b_2|}{|a_2 - b_2|} \frac{|\alpha_1|}{|\alpha_1 - \alpha_2|} (|a_2| - 1)(1 - |b_2|)
\]

for all \(x \in \mathbb{R} \).

If we define a function \(F : \mathbb{R} \to X \) by

\[
F(x) := \frac{\alpha_1}{\alpha_1 - \alpha_2} F_2(x) - \frac{\alpha_2}{\alpha_1 - \alpha_2} F_1(x)
\]

for each \(x \in \mathbb{R} \), then \(F \) is also a solution of Eq. (1.5), and the inequality (3.10) follows from the last inequality. \(\square \)

Acknowledgment. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (No. 2013R1A1A2005557).

References

